Successful implementation of a multi-tiered system of supports (MTSS) and, specifically, intensive intervention through the data-based individualization (DBI) process, demands the collection and analysis of data. As teams consider data collection, challenges may occur with assessment administration, scoring, and data entry (Taylor, 2009). This resource reviews three data collection and entry challenges and strategies to ensure data about risk status and responsiveness accurately represent student performance and minimize measurement errors.
Search
Resource Type
DBI Process
Subject
Implementation Guidance and Considerations
Student Population
Audience
Event Type
Search
The purpose of this document is to provide content-specific examples of how to structure educator-level and/or systems-level coaching as a mechanism to ensure ongoing professional learning to support tiered intervention. This document provides examples of coaching supports, models, and functions within the context of tiered intervention (e.g., RtI, PBIS, MTSS) and data-based decision making (e.g., data-based individualization [DBI]) for educators who already have foundational knowledge and/or experience with coaching.
If we don’t implement critical components of an intervention with consistency, we cannot link student outcomes to the instruction provided. Fidelity can help us to determine the effectiveness of an intervention, and identify if a student requires more intensive supports. This resource outlines five elements of fidelity and provides guiding questions for each.
If you are like most educators, you agree with the idea of providing intensive intervention for students with the most intractable academic and behavior problems. The question you may be asking is, how do I find the time? This guide includes strategies that educators can consider when trying to determine how to find the time for this intensification within the constraints of busy school schedules. Supplemental resources, planning questions, and example schedules are also provided.
The purpose of this module is to introduce schools interested in implementing intensive intervention to the infrastructure needed to implement data-based individualization (DBI). The module includes presentation slides with integrated activities and handouts to help teams determine their readiness and develop an action plan for implementation.
This updated training module provides a rationale for intensive intervention and an overview of data-based individualization (DBI), NCII’s approach to providing intensive intervention. DBI is a research-based process for individualizing validated interventions through the systematic use of assessment data to determine when and how to intensify intervention. Two case studies, one academic and one behavioral, are used to illustrate the process and highlight considerations for implementation.
This is part 2 of the module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part includes examples of graphed data and is intended to provide participants with guidance for reviewing progress monitoring data to determine if the instructional plan is working or if a change is needed.
This checklist can be used by intervention providers or planning teams to review, document, and improve implementation of the data-based individualization (DBI) process and monitor whether the student intervention plans were implemented as intended.
This module focuses primarily on selecting evidence-based interventions that align with the functions of behavior for students with severe and persistent learning and behavior needs. The emphasis of this training will include four main content areas: (a) relating assessment to function, (b) selecting evidence-based interventions that align with functions of behavior, (c) linking assessment and monitoring, and (d) connecting data with the evidence-based interventions selected. The overarching goal is to connect concepts and theories in behavior and begin planning how intensive intervention can be put into practice to support students with intensive behavioral needs.
This is part 1 of the larger module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part is intended to provide an overview of common general outcome measures (GOM) used for progress monitoring in reading and mathematics, with guidance on selecting an appropriate measure.
