The purpose of this guide is to provide an overview of behavioral progress monitoring and goal setting to inform data-driven decision making within tiered support models and individualized education programs (IEPs).
Search
Resource Type
DBI Process
Subject
Implementation Guidance and Considerations
Student Population
Audience
Search
This fourteen minute video shares Wyoming’s journey in building the capacity of educators to implement data-based individualization (DBI) to improve academic and behavior outcomes for students with disabilities as part of their state systemic improvement plan (SSIP). Wyoming administrators, teachers, parents and students from Laramie County School District # 1 and preschool sites share how DBI implementation impacted teacher efficacy, team meetings, quality of services, student confidence, and state and local collaboration.
In this video, Amy McKenna, a special educator in Bristol Warren Regional School District shares her experience with data-based individualization (DBI). Amy discusses how she learned about DBI, the impact her use of the DBI process had on students she worked with, and how DBI helped changed her practice as a special educator.
In this article, school psychologist Kelly Glick shares about the role school psychologists play in implementing intensive intervention through a data-based individualization (DBI) process and how implementing DBI has impacted her district.
Support from leaders is essential for effective DBI implementation. This resource illustrates how DBI can help principals and local level administrators leverage existing resources, integrate supports for academics and behavior, define Tier 3, align special education and MTSS, establish effective data meetings, and improve outcomes for students who are at-risk for poor learning outcomes. In addition, the resource shares strategies and resources available to support implementation
Teams are a vital part of an effective multi-tiered system of supports (MTSS) across both academics and behavior as well as special education. Making connections across the across the various teams used in MTSS and special education can be challenging. This resource from NCII and the PBIS Center, provides information about how DBI can support IEP implementation and provides a table with key considerations for teams working across the MTSS system.
The purpose of this module is to introduce schools interested in implementing intensive intervention to the infrastructure needed to implement data-based individualization (DBI). The module includes presentation slides with integrated activities and handouts to help teams determine their readiness and develop an action plan for implementation.
This training module, includes four sections that (a) provide an overview of administering common general outcome measures for progress monitoring in reading and mathematics, (b) review graphed progress monitoring data, and (c) provide guidance on identifying what type of skills the intervention should target to be most effective in reading and mathematics.
This module serves as an introduction to important concepts and processes for implementing functional behavior assessment (FBA), including behavior basics such as reinforcement and punishment. Throughout this module, participants will discuss both real world and school based examples to become familiar with the FBA process and develop a deeper understanding and awareness of the functions of the behavior. Key topics include (a) defining FBAs in the context of DBI; (b) basic concepts in behavior, including antecedents, behaviors, and consequences; (c) levels of FBAs; and (d) considerations and procedures for conducting FBAs.
This updated training module provides a rationale for intensive intervention and an overview of data-based individualization (DBI), NCII’s approach to providing intensive intervention. DBI is a research-based process for individualizing validated interventions through the systematic use of assessment data to determine when and how to intensify intervention. Two case studies, one academic and one behavioral, are used to illustrate the process and highlight considerations for implementation.
