This training module demonstrates how academic progress monitoring fits into the Data-Based Individualization (DBI) process by (a) providing approaches and tools for academic progress monitoring and (b) showing how to use progress monitoring data to set ambitious goals, make instructional decisions, and plan programs for individual students with intensive needs.
Search
Resource Type
DBI Process
Subject
Implementation Guidance and Considerations
Student Population
Audience
Event Type
Search
Monitoring Student Progress for Behavioral Interventions (DBI Professional Learning Series Module 3)
This module focuses on behavioral progress monitoring within the context of the DBI process and addresses: (a) methods available for behavioral progress monitoring, including but not limited to Direct Behavior Rating (DBR), and (b) using progress monitoring data to make decisions about behavioral interventions.
This training module, includes four sections that (a) provide an overview of administering common general outcome measures for progress monitoring in reading and mathematics, (b) review graphed progress monitoring data, and (c) provide guidance on identifying what type of skills the intervention should target to be most effective in reading and mathematics.
This is part 1 of the larger module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part is intended to provide an overview of common general outcome measures (GOM) used for progress monitoring in reading and mathematics, with guidance on selecting an appropriate measure.
This is part 2 of the module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part includes examples of graphed data and is intended to provide participants with guidance for reviewing progress monitoring data to determine if the instructional plan is working or if a change is needed.
This is part 3 of the larger module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part is intended to provide participants with an introduction to error analysis of curriculum-based measures for the purpose of identifying skill deficits and providing examples of error analysis in reading and mathematics. Part 4, “Identifying Target Skills,” will further link these skill deficits to intervention.
This is part 4 of the module, “Informal Academic Diagnostic Assessment: Using Data to Guide Intensive Instruction.” This part of the module is intended to provide participants with guidance for identifying skills to target in reading and math interventions.
This tool is designed to help educators collect and graph academic progress monitoring data across multiple measures as a part of the data-based individualization (DBI) process. This tool allows educators to store data for multiple students (across multiple measures), graph student progress, and set individualized goals for a student on specific measures.
This webinar addresses a challenge faced by many teachers: feeling inundated by data while struggling to find useful information to guide intervention decision-making
Data teams serve multiple roles in the data-based individualization (DBI) process and across a multi-tiered system of supports (MTSS). Although schools may have multiple teams that review different types of data across a multi-tiered system of supports (MTSS), the intensive intervention or DBI team is focused on the needs of individual students who are not making progress in their current intervention or special education program. It is critical that these meetings are driven by data, occur regularly, and use an efficient, consistent process that allows participants to review progress and make intervention decisions for students. NCII has created a series of tools to help teams establish efficient and effective individual student data meetings.
