In this Voices from the Field post, we archive the presentations from day 1 of the NCII 10-year celebration of the implementation of intensive intervention. On this day, panelists shared stories focused on creating the systems to support implementation of intensive intervention.
Search
Resource Type
DBI Process
Subject
Implementation Guidance and Considerations
Student Population
Audience
Event Type
Search
This three-part Voices from the Field video series profiles how Education Service Center (ESC) 15 in Texas approached implementing the DBI process in San Saba Independent School District (ISD). In these videos, Dedra Carter and Valerie Moos from ESC 15 and Jenna McSherry from San Saba ISD, discuss their experiences and recommendations for other districts implementing DBI.
This IRIS Star Legacy Module, first in a series of two, overviews data-based individualization and provides information about adaptations for intensifying and individualizing instruction. Developed in collaboration with the IRIS Center and the CEEDAR Center, this resource is designed for individuals who will be implementing intensive interventions (e.g., special education teachers, reading specialists, interventionists).
This IRIS Star Legacy Module, the second in a series on intensive intervention, offers information on making data-based instructional decisions. Specifically, the resource discusses collecting and analyzing progress monitoring and diagnostic assessment data. Developed in collaboration with the IRIS Center and the CEEDAR Center, this resource is designed for individuals who will be implementing intensive interventions (e.g., special education teachers, reading specialists, interventionists).
Progress monitoring is an essential part of a multi-tiered system of supports (MTSS) and, specifically, the data-based individualization (DBI) process. It allows educators and administrators to understand whether students are responding to intervention and if adaptations are needed. In addition, these data are often used to set high-quality academic and behavioral goals within the individualized education program (IEP) for students with disabilities. With the closure of schools due to the COVID-19 pandemic, educators and administrators need to rethink how they collect and analyze progress monitoring data in a virtual setting. This collection of frequently asked questions is intended to provide a starting place for consideration.
This fourteen minute video shares Wyoming’s journey in building the capacity of educators to implement data-based individualization (DBI) to improve academic and behavior outcomes for students with disabilities as part of their state systemic improvement plan (SSIP). Wyoming administrators, teachers, parents and students from Laramie County School District # 1 and preschool sites share how DBI implementation impacted teacher efficacy, team meetings, quality of services, student confidence, and state and local collaboration.
Teams are a vital part of an effective multi-tiered system of supports (MTSS) across both academics and behavior as well as special education. Making connections across the across the various teams used in MTSS and special education can be challenging. This resource from NCII and the PBIS Center, provides information about how DBI can support IEP implementation and provides a table with key considerations for teams working across the MTSS system.
Part 2 of the two part series about UCF's project bridges highlights challenges and successes the program has faced when trying to build the skills and competencies of educators to implement intensive intervention.
In this article, Drs. Mary Little, Cynthia Pearl and Dena Slanda share lessons and strategies to support teachers in developing the skills and competencies to implement intensive intervention.
Data-based individualization (DBI) is a research-based process for individualizing and intensifying interventions through the systematic use of assessment data, validated interventions, and research-based adaptation strategies. The DBI process includes five iterative steps:
